Every 3-connected distance claw-free graph is Hamilton-connected
نویسندگان
چکیده
منابع مشابه
Every 3-connected, locally connected, claw-free graph is Hamilton-connected
A graph G is locally connected if the subgraph induced by the neighbourhood of each vertex is connected. We prove that a locally connected graph G of order p 3, containing no induced subgraph isomorphic to K 1;3 , is Hamilton-connected if and only if G is 3-connected.
متن کاملEvery 3-connected claw-free Z8-free graph is Hamiltonian
In this article, we first show that every 3-edge-connected graph with circumference at most 8 is supereulerian, which is then applied to show that a 3-connected claw-free graph without Z8 as an induced subgraph is Hamiltonian, where Z8 denotes the graph derived from identifying one end vertex of P9 (a path with 9 vertices) with one vertex of a triangle. The above two results are both best possi...
متن کاملEvery 4-connected line graph of a quasi claw-free graph is hamiltonian connected
Let G be a graph. For any two distinct vertices x and y in G, denote distG(x, y) the distance in G from x and y. For u, v ∈ V (G) with distG(u, v) = 2, denote JG(u, v) = {w ∈ NG(u)∩NG(v)|N(w) ⊆ N [u]∪ N [v]}. A graph G is claw-free if it contains no induced subgraph isomorphic to K1,3. A graph G is called quasi-claw-free if JG(u, v) 6= ∅ for any u, v ∈ V (G) with distG(u, v) = 2. Kriesell’s res...
متن کاملEvery N2-Locally Connected claw-Free Graph with Minimum Degree at Least 7 is Z3-Connected
Let G be a 2-edge-connected undirected graph, A be an (additive) abelian group and A∗ = A−{0}. A graph G is A-connected if G has an orientation D(G) such that for every function b : V (G) 7→ A satisfying ∑ v∈V (G) b(v) = 0, there is a function f : E(G) 7→ A ∗ such that for each vertex v ∈ V (G), the total amount of f values on the edges directed out from v minus the total amount of f values on ...
متن کاملTriangularly connected claw-free graph
A graph G is triangularly connected if for every pair of edges e1, e2 ∈ E(G), G has a sequence of 3-cycles C1, C2, · · · , Cl such that e1 ∈ C1, e2 ∈ Cl and such that E(Ci) ∩ E(Ci+1) 6= ∅, (1 ≤ i ≤ l − 1). In this paper it is shown that every triangularly connected claw-free graph G with |E(G)| ≥ 3 is vertex pancyclic. This implies the former results in [2], [3], [4] and [5] that every connecte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2003
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(02)00687-8